Wednesday, 18 November 2020

V Semester Record Work




Follow the instructions given

Write the Record in physics or chemistry Record Book

Draw the diagrams on the left plain page and corresponding 
notes on the ruled page

If diagrams are not clear see the similar diagram on the net
or draw from a good text book



Study of Mitosis in plant cells by Root Tip Squash Technique.

Aim: To observe the mitotic cell division and different stages of mitosis in Onion root tips.
Materials Required : Watch glass, holders, Slide, Cover slips, Needles, root tips, 70% ethanol, acetic acid, 1% acetocarmine, distilled water,1N HCL, Dropper and microscope.
Method of preparing Acetocaramine:
Acetocaramine is used for staining the root tips. 1% Acetocaramine is prepared for staining.
Preparation:
Take 55ml of distilled water in a beaker or conical flask. Add 45ml of glacial acetic acid to prepare 45% of acetic acid. Heat the solution until it reaches its boiling point. To that add 1 gm of  Orcein powder, after heating the solution, cool it overnight. Filter the solution and use for staining.
Procedure:
Take a medium sized onion bulb (Allium cepa). Trim off the old roots at its base and place the onion bulb on a bottle of water with its cut base dipping in the water. Notice the emergence of a number of new roots after a few days.
 As the onion roots grow to a length of 2-3 cms or more the terminal tips  (about 5mm) are harvested between 9:00 am to 12 noon. And immediately fixed in Carnyos fixative of 3:1 – alcohol 70%  and acetic acid 30% solution. This fixes the different stages of mitosis permanently.
After 15 minutes the roots are transferred to 70% ethanol and refrigerated.
The root tips are washed with water and are treated with 1N HCL in a watch glass for 5 minutes to soften the tissue. The root tips are removed from the HCL and placed in 45% Acetocaramine stain in a watch glass.
Warm the slide gently over the spirit lamp for about one minute. It is kept aside for 5 minutes so that stain is taken up by the cells. The tips of the root appear in dark red colour.
  The stained material is placed on a slide and the dark red root tips are cut using a blade and remaining part of the root is discarded. Add one drop of acetocaramine stain. The root tips are covered with cover slip and topped by using a needle or pencil, so that, the material is squashed properly and evenly.
Observe the slide under a compound microscope in 10x objective. Scan and narrow down to a region containing diving cells and switch to 40x for a better view.
                                                             



Cut the root tips upto 1cm
fix in Carnyos fixative (3:1 – alcohol and acetic acid)
transfer to 70% ethanol and refrigerate
treat with 1N HCL for minutes
add 45% Acetocaramine stain
warm gently over the spirit lamp
transfer the root tips to slide
Add 1 drop of Acetocaramine stain
Cover with cover slip

Tap with needle or pencil head
Observe under a microscope







Draw the box on left plain page



























Observation

Mitosis occurs in somatic or vegetative cells hence it is also called as somatic cell division.
Mitotic division results in the formation of two identical daughter cells. Hence it is also called as equatorial division.
Mitosis includes karyokinesis (Nuclear division) and cytokinesis (cytoplasmic divison)
Karyokinesis consists of 4 phases namely – i. Prophase, ii. Metaphase,  iii. Anaphase, iv. Telophase.
 















Prophase:
1.     1. The chromosomes are long, slender and spread extensively in the nucleoplasm.
2.      2.They are gradually condensing to short, thick, stout and rod shaped.
3.     3. Each chromosome has two arms called the chromatids which are united at the centromere.
4.    4. Nuclear membrane and nucleolus are dissolving slowly.
5.     5. The chromosomes appear to be randomly scattered in the cytoplasm.




Metaphase:
1.     1. Bipolar spindle is organised between two poles of the cell.
2.     2. Three types of spindle fibres are seen – continuous fibres, chromosomal fibres and interzonal fibres
3.     3. Chromosomal fibres are attached to the centromere of the each chromosomes and bring them to the middle of the cell forming the equatorial plane.
4.      4.The centromeres of all the chromosomes lie on equatorial plane and their arms are floating freely.


 
   Anaphase:
1.      Due to contraction of spindle fibres, the centromere of each chromosome divides and the two chromatids are separated, thus daughter chromosomes are seen
2.      The spindle fibres are pulling the daughter chromosomes to the opposite poles
3.      During the movement of the chromosomes to the poles, the centromeres lie ahead followed by arms.
4.      The chromosomes appear in shape of V, L, or I

 
 Telophase:
1.      The daughter chromosomes are seen at the respective opposite poles.
2.      They are decondensing to form the chromatin material
3.      The nuclear member and nucleolus re-appears

 

Meiosis

Smear Preparation of Onion Flower Buds to study Meiosis
Aim: To observe the meiotic cell division and different stages of meiosis in Onion flower buds
Materials Required: Flower buds of  Onion of appropriate size, Carnoy’s fluid, Acetocarmine stain, Glass slides, cover slips
Procedure:      
Select appropriate flower buds of different size from the buds of Onion. Fix them in Carnoy’s fluid for 12 – 24 hours. Take a preserved flower bud and place it on a glass slide. Separate the anthers and discard the other parts of the bud. Add 1 or 2 drops of acetocarmine stain and squash the anthers.
Leave the material in the stain for 5 minutes. Place a cover slip over them and tap it gently with a needle or pencil. Warm slightly over the flame of a spirit lamp. Put a piece of blotting paper on the cover slip and apply uniform pressure with your thumb.
Observe the slide under the microscope for different meiotic stages.
Meiosis occurs in two stages called 1) Meiosis – I and 2) Meiosis – II
Meiosis I is heterotypic division. During this stage, the diploid parent nucleus divides into two daughter nuclei each having haploid set of chromosomes.
Meiosis II is homeotypic divison. In this the two haploid nuclei divide mitotically and form four haploid nuclei. Thus, from a single parent cell containing diploid (2n) chromosomes, four haploid (n) daughter cells are formed.

Draw the respective stage from the diagram 

given below on the left plain page and notes on 

the ruled page.

Meiosis I or First Meiotic Division
1.    Prophase I


A) Leptotene:
i.                    Nucleus is enlarged in size
ii.                  Chromosomes are long and slender and show bead like structures called ‘chromomeres’.
iii.                The chromosomes are arranged parallel to each other and well separated

B) Zygotene:
i.                    The homologous chromosomes are in pairs and are called as bivalents. The process of pairing is known as synapasis
ii.                  Synapsis may be proterminal, procentric or Random
iii.                Nucleolus is enlarged


C) Pachytene:
i.                    Each chromosome is having two chromatids. Thus, in each bivalent, four chroomatids are seen. These are called pachytene tetrads
ii.                  X shaped structures called the chiasmata are seen between non-sister chromatids
iii.                 

D) Diplotene:
i.                    Homologous chromosomes are moving away from each other
ii.                  But they are attached at chiasma, which appear in ‘X’shaped structures.
iii.                Chromosomes are  condensed and thick

E)  Diakinesis:
i.                    Chiasmata begin to move towards the chromosome ends, this is called terminalisation.
ii.                  The bivalents are very thick and short and are present in the periphery of nucleus.
iii.                The nucleolus and nuclear membrane disappear.
iv.                Chromosomes are released into the cytoplasm.

2.    Metaphase I
i.                    Bipolar spindle apparatus present
ii.                  Spindle fibres are attached to the centromere of the each chromosomes and bring them to the middle of the cell forming the equatorial plane.
iii.                Centromeres are directed towards the opposite poles and their arms towards  the equator.
iv.                The homologous chromosomes are fused by the chiasmata at the telomeric ends.

3.    Anaphase I
i.                    Due to contraction of spindle fibres each homologous chromosome moves towards the respective poles.
ii.                  Two genomes (chromosome sets) are separated and carried to their respective poles

4.    Telophase I
i.                    The chromosomes arrives at the poles.
ii.                  The chromosomes start elongating by lessening their coils
iii.                Two daughter nuclei are organised each possessing a haploid (n) number of chromosomes




Genetics Problems
Write the Cross and Punnet square for each problem on left side plain page.


1. 1.    When a tall plant is selfed it produced 64 plants having tall and dwarf phenotype. How many are tall and how many are dwarf?
Phenotype:        Tall plants    X    Dwarf plants

                
  

            
Genotype:                 TT          X    tt

        

 Gametes                     T            X   t

                                             Tt

Selfing of F1 parents:
                        F1    x   F1
                        Tt    x  Tt
Phenotypic ratio : 3:1 (Tall Plants 3, Dwarf plants 1)
Genotypic ratio   : TT : Tt: tt
                                 1  :   2 : 1
Number of plants = 64
Number of dwarf plants = 64/4 = 16
Number of tall plants      = 16 X 3 = 48
Result : Out of 64 plants, 48 are tall plants and 16 are dwarf plants.


2) What will be the result of selfing F1 generation in a cross when round and yellow seeded pea plants (YYRR) are crossed with green and wrinkled (yyrr) seeded pea plants.
Phenotype: Yellow Round     X         Green Wrinkled
Genotype :      YYRR              X           yyrr        ------------- Parents
                                        
 Gametes   :        YR                X            yr

F1 Generation                    YyRr
                                    Yellow Round

Self cross of F1 Generation :  F1    X   F1

Result : -
Phenotypic ratio  = 9:3:3:1
            Yellow Round : Yellow Wrinkled : Yellow Round : Green Wrinkled
                        9          :           3               :            3           :        1
Genotypic ratio = 1:2:2:4:1:2:1:2:1
YYRR:YYRr:YyRR:YyRr:YYrr:Yyrr:yyRR:yyRr:yyrr
    1   :    2:    2    :      4  :   1:   2    :   1:      2:     1

1 – YYRR  : - Homozygous Yellow and Round
2 – YYRr   :- Homozygous Yellow and Heterozygous Round
Write the Remaining Genotypes

3) When round and yellow seeded pea plants (YYRR) are crossed with green and wrinkled (yyrr) seeded plants  F1 are yellow and round seeded plants (YyRr). What will be the result when this F1 is crossed  with round and yellow seeded plants?
 Phenotype : Round and Yellow  X  Wrinkled  and Green
Genotype    :  RRYY          X     rryy --------Parent
Gametes            RY               X      ry

                                     

F1 Generation                    RrYy

Crossing of F1 Generation with Round and Yellow seeded plants
                        RrYy     X   RRYY
Result:
Phenotypic ratio : all are round and yellow seeded plants
Genotypic ratio : RRYY : RRYy : RrYY : RrYy
                              1      :    1     :      1  :       1
Write the names of Genotypes

4) In Garden peas tall plant habit ‘T’ is dominant over dwarf ‘t’. Green pods ‘G’ over yellow ‘g’. Bring out a cross between Tall Yellow with Dwarf Green and obtain F1 and F2. Give percentage of Tall Green homozygous among F2. Give the F2 genotypic ratio.
Phenotype : Tall plants and Yellow pods     X       Dwarf plants with Green pods
Genotype   :         TTgg                                X           ttGG
     :                                              
Gametes                   Tg                                X            tG

F1 Generation                              TtGg
Self Cross of F1 Generation   TtGg            X        TtGg

Result :
F2 Phenotypic Ratio : 9:3:3:1
            Tall Green :  Tall Yellow : Dwarf Green  : Dwarf Yellow
                  9          :        3           :       3:           :         1

F2 Genotypic Ratio:  TTGG: TTGg: TtGG : TtGg : TTgg: Ttgg : ttGG : ttGg : ttgg
                                 1         2      2         4         1        2          1       2       1
Write the names of Genotypes
Percentage of Tall plants with Green Pods and F2 generation is
            1/16 X 100 = 6.25%

5) In Snapdragon Red Flower ‘R’ is incompletely dominant over white ‘r’, the heterozygous being pink. The normal broad leaves ‘B’ are incompletely dominant over narrow leaves ‘b’. The heterozygous being intermediate leaf breadth. Find out the phenotype of the following crosses:
A. Red flowered Broad leaved plant crossed with White flowered Narrow leaved plant. What will be F1 and   F2.
B. Test Cross
C. Back Cross

A) Phenotype : Red Flower Broad Leaves   X    White Flowered Narrow leaves
Genotype :         RRBB                                        X      rrbb
                                                
Gametes                 RB                                          X        rb

F1 Generation                                RrBb ------ Pink Flowered and Intermediate leaves
Self Cross of F1 Generation
                                    RrBb                X          RrBb
                                        



Phenotypic Ratio: 1:2:2:4:1:2:1:2:1 
Write the names of Phenotypes
B) F1 X Recessive Parent
RrBb X rrbb
Gametes - RB, Rb, rB, rb  X rb

 

RB

Rb

rB

rb

rb

RrBb

Rrbb

RrBb

rrbb


Phenotypic and Genotypic Ration - 1:1:1:1


C) B) F1 X  Dominant Parent

       RrBb X RRBB
Gametes - RB, Rb, rB, rb  X rb

 

RB

Rb

rB

rb

RB

RRBB

RRBb

RrBB

RrBb



Write the names of Genotypes for all the three crosses

6)  In a pea plant the allele ‘T’ for tallness is dominant over the allele ‘t’ for dwarfness and the allele ‘R’ for round seeds is dominant over allele ‘r’ for wrinkled seeds.
Give the phenotypes of the progeny of the following crosses:
i.                 TtRr X ttrr             ii. TTRR X ttrr              iii. TtRr X TtRr

I)                 TtRr X ttrr
Phenotype : Tall Plants and Round seeds  X  Dwarf Plants and Wrinkled seeds
Genotype   :         TtRr                                X        ttrr
 Phenotypic Ratio : 1:1:1:1
     Tall Round : Tall Wrinkled : Dwarf Round : Dwarf Wrinkled
Genotpic Ratio :  TtRR : Ttrr : ttRr : ttrr
                              1         1       1        1
II)               TTRR X ttrr
Phenotype : Tall Plants and Round seeds  X  Dwarf Plants and Wrinkled seeds
Genotype   :         TTRR                              X        ttrr
    :                                             
Gametes                   TR                               X          tr

      F1  Generation                                           TtRr
                                                                        (Tall Plants and Round Seeds)

III)             TtRr  X TtRr

Phenotypic Ratio: 9:3:3:1
             Write the names of Phenotypes
                   Genotypic Ratio : 1:2:2:4:1:2:1:2:1
             Write the names of Genotypes

7) In a plant a cross between Red flowered plant and White flowered plant yields plant of both the colours in equal proportion but a cross between two white flowered plants yields only white flowered plants. What could be the genotypes of the parents and which phenotype is recessive?

 If a cross between Red flowered plant and White flowered plant yields plant of both the colours in equal proportion means it should be a test cross.
 Phenotype :  Red flowered plant    X   White flowered plant
Genotype   :           Rr       X    rr
                                        
Gametes                 R  r     X      r
                                   Rr              rr
                          Red flowered     White Flowered
   
And if a cross between two white flowered plants yields only white flowered plant, then it means that the white flowered phenotype is recessive.
Phenotype :    White flowered plant   X  White flowered plant
Genotype  :                     rr      X     rr
 Gametes   :                      r              r                                
F1Generation :                        rr
                                               White flowered
White flowered phenotype is recessive.

8. In a pea plant with  round seeds is crossed with a dwarf plant having wrinkled seeds. The progeny is obtained in the ratio of
1. One Tall plant with round seeds
2. One Tall plant with wrinkled seeds
3. One Dwarf plant with round seeds
4. One Dwarf plant with wrinkled seeds
Derive the parental genotype.


1st Assumption:
Parents:          TTRR    X          ttrr
                
 Gametes             TR     X          tr
              
TtRr
The progeny obtained does not match with that of the progeny given in the problem. So, the homozygous parent is not the actual parent.

2nd As  sumption:
Parents:        TtRr       X          ttrr
Gametes:   TR  Tr   tR  tr      X      tr
            TrRr                               Ttrr                                          ttRr                                           ttrr
tall plant round seeds     tall plant with wrinkled seeds   dwarf plant with round seeds   dwarf plant with                                                                                                                                               wrinkled seeds

The parental genotype is   heterozygous tall plant with round seeds and homozygous dwarf plant with wrinkled seeds.


9) A fully heterozygous grey bodied (B+) normal winged (Vg+) female F1 of fruit fly was crossed with black bodied (b), vestigial (Vg) male gave the following results:
Grey Normal   - 126
Grey Vestigial - 24
Black Normal  - 26
Black Vestigial - 124
a)     Does this indicate linkage?
b)     If so what is the percentage of crossing over?
c)      Draw the  cross showing the arrangement of the genetic markers on the chromosome.
B+   - Grey body                                             Vg+ - Normal Winged
B -     Black Body                                            Vg – Vestigial wings
Parents     BB Vg+ Vg    X   BB Vg Vg

Grey Vestigial BB Vg Vg           - 24
                      Cross over or parental types
Black Normal  - BB Vg+ Vg         - 26      


Grey Normal   BB Vg+ Vg    - 126
Black Vestigial c Vg Vg             - 124   
     Crossrsrossrscombinantsmbinants

  As B+ and   Vg+ are present on the same chromosome they show linkage. As they enter the gametes together some fruit flies show parental characters, hence they are called parental types or Non-crossovers.
            % of Non-Cross over = Number of Parental Recombinants      X  100
                                                Total number of progeny

                                           = 
                                                       = 126 X124   X 100
                                                               300
                                                        = 250  X 100
                                                           300
                        The percentage of Non-Crossovers     = 83.33%

% of Crossing over = Number of Recombinants      X  100
                        Total number of progeny
                                                 =  24 X26   X 100
                                                       300
                        =    50   X 100
                               300
      The percentage of Crossover = 16.6% centimorgans
Draw the Map distance on the left plain page.

10) The recessive gene ‘sh’ produces shrunken corn kernels and its dominant allele ‘sh+’ produces full plumpy kernels. The recessive gene ‘c’ produces colourless endosperm and its dominant allel ‘c+’produces coloured endosperm. A pure plumpy kernels and coloured endosperm is crossed with shrunken kernels and colourless endosperm. The F1 is crossed with recessive parent and produced the following progeny:
Shrunken Coloured    -149
Shrunken Colourless  - 4035
Plumpy Colourless     - 152
Plumpy Coloured       - 4032
a)     Does this indicate linkage?
b)     What is the crossing over percentage?
c)      Construct the genetic map.
Parent -    Sh+ C+        X  Sh C
                 Sh+ C+              Sh C
              Gametes  Sh+ C+         Sh C    
                    F1 Generation Sh+ C+       
                                           Sh  C 
     Yes it indicates Linakge.

                                    Sh+ C+       Sh C
                                    Sh  C           Sh  C
            % of Non-Cross over = Number of Parental Recombinants      X  100
                                                Total number of progeny
                                                = 4032 X4035   X 100
                                                       8368
                                                = 8067  X 100
                                                     8368
The percentage of Non-Crossovrs     = 96.4%

% of Crossing over = Number of Recombinants      X  100
                                    Total number of progeny
                                                 =  149 X152   X 100
                                                       8368
                                    =    301   X 100
                             8368
                        = 3.6%

      The percentage of Crossover = 3.6% centimorgans


11) In corn a dominant gene ‘C’ produces coloured aleurone, its recessive allele produces colourless aleurone. Another dominant gene ‘Sh’ produces full, plumpy kernels, its recessive allele ‘sh’produces shrunken kernels, due to collapsing of endosperm. A third dominant allele ‘Wx’ produces normal starchy endosperm and its recessive allele ‘wx’ produces waxy starch.
A homozygous plant from a seed with colourless, plumpy and waxy endosperm is crossed to a homozygous plant from a seed with coloured, shrunken and starchy endosperm.
The F1 is test crossed to a colourless, shrunken, waxy strain. The progeny seed exhibit the following phenotypes
1.     Colourless, shrunken, starchy                        - 113
2.     Coloured, plumpy, waxy                                - 116
3.     Coloured, shrunken, waxy                             - 601
4.     Colourless, plumpy, starchy                          - 626
5.     Colourless, plumpy, waxy                              - 2708
6.     Coloured, shrunken, starchy                         - 2538
7.     Colourless, shrunken waxy                            - 2
8.     Coloured, plumpy, starchy                            - 4

a.     Construct a genetic map of this region on Chromosome.
b.     Calculate the coefficient of coincidence.
Dominant                                                             Recessive
i. Coloured aleurone – C                                     Coloureless aleurone – c
ii. Full Endosper        - Sh                                   Shrunken endosperm  - sh
Starchy Endosperm   - Wx                                  Waxy Endosperm       - wx

→Phenotypes      -   Coloured, Shrunken, Starchy Endosperm      X  Coloureless, Plumpy, Waxy Endosperm
Genotype          - C sh Wx                   X   c Sh wx
                              C sh  Wx                           c Sh wx

Gametes              C sh Wx               X       c Sh wx

      F1 Generation:                                 C sh Wx
                                                               c Sh wx
                                             (Coloured, Plumpy, Starch Endosperm)

Test Cross :                    C sh Wx                        X   c sh wx
                                       c Sh wx                           c sh wx
         (Coloured, Plumpy, Starchy Endosperm)        (Coloureless, shrunken, waxy endosperm)


Female gametes
Male gametes c  sh wx
Progeny

Non-Cross Over
C sh Wx



c Sh wx
C shWx/ c sh wx
( Coloured, shrunken, starchy)

c Sh wx / c sh wx
(Colourless, plumpy, waxy)
2538

                      5246          
2708

Single Cross over
(C – Sh)
C Sh wx



c sh Wx
C Sh wx/ c sh wx
( Coloured, Plumpy, Waxy)

c sh Wx / c sh wx
(Colourless, shrunken, starchy            )                      

116

                  229

113
Single Cross over
( Sh  - Wx)
C sh wx



c Sh Wx
C sh wx / c sh wx
(Coloured, Shrunken, Waxy)

c Sh Wx / c sh wx
(Colourless, Plumpy, Starchy)
601

                 1227    

626
Double Crossover
(C – Sh)
(C – Wx)
C Sh Wx



c sh wx
C Sh Wx/ c sh wx
(Coloured, Plumpy, Starchy)

c sh wx / c sh wx
(colourless, shrunken, waxy)
4

               6

2


                     Total
6708

                  % of Non-Cross over = Number of Parental types      X  100
                                          Total number of progeny
                                              =   2538 + 2708   X  100
                                                               6708
                                               =  5246   X  100
                                                                6708
                                                             = 78.20%
      Frequency (%) of crossing over between C and Sh
                                                               229 + 6   X 100
                                                               6708
                                                               = 3.5 %

Frequency (%) of crossing over between Sh and Wx
                                                               1227 + 6   X 100
                                                               6708
                                                               = 18.4 %

Frequency (%) of crossing over between C and Wx
                                                               229+ 1227   X 100
                                                                   6708
                                                               = 21.7 %

The recombination value of C and Wx (21.7) is close to the recombination value of (C-Sh) + (Sh-Wx) = 3.4 + 18.4 = 21.9%.
This shows that gene ‘Sh’is present between the genes ‘C’and ‘Wx’.
On this basis the linkage map of genes C, Sh, Wx can be –
 
                                        C     3.5        Sh            18.4              Wx        
                            ________3.5____________18.4________________

 →                                     →



12. A kidney or bean shaped eye is produced by a recessive gene ‘k’ on the third chromosome of Drosophilla. Orange eye colour called ‘cardinal’ is produced by the recessive gene ‘cd’ on the same chromosome. Between those two loci is a third locus with a recessive allele ‘e’ producing ebony body colour. Homozygous  kidney, cardinal females are mated to a homozygous ebony males. The tri-hybrid F1 females are then test crossed to produce the F2. Among 4000 F2 progeny are of the following:
1761    - Kidney, cardinal                   97        - Kidney                      
1773    - Ebony                                   89        - Ebony, cardinal
128      - Kidney, ebony                      6          - Kidney, ebony, cardinal
138      - Cardinal                                8          - Wild type
a) Determine the linkage relationship in the parents and F1 tri-hybrid.
b) Estimate the map distance.
Dominant                                                             Recessive
i. Coloured aleurone – C                                     Coloureless aleurone – c
ii. Full Endosper        - Sh                                     Shrunken endosperm  - sh
Starchy Endosperm   - Wx                                              Waxy Endosperm       - wx
Phenotypes      -   Kideny, Cardinal      X  Ebony
Genotype          - K  e+ cd                X      K+ e cd+
                              K  e+ cd                        K+ e cd+

Gametes              K  e+ cd                X       K+ e cd+

      F1 Generation:                                 K  e+ cd
                                                               K+ e cd+
                                                                 (Wild Type)

Test Cross :                   K  e+ cd              X    K e cd
                                        K+ e cd+                      K e cd
                                                      
                                    (Wild type)        (Kidney, Cardinal, ebony)


Female gametes
Male gametes c sh wx
Progeny



Non-Cross Over
K  e+ cd


K+ e cd+
K  e+ cd / k e cd
( Kidney, Cardinal)

K+ e cd+/ k e cd
(Ebony)
1761

                      3534          
1773

Single Cross over

K e cd+



K e+ cd
K e cd+/ k e cd
( Kideny, ebony)

K+ e+ cd / k e cd
(Cardinal)                   

128

                     266

138
Single Cross over

k e+ cd+


K+ e cd
k e+ cd+ / k e cd
(Kideny)

K+ e cd / k e cd
(Ebony, k e cd Cardinal)
97

                 186    

89
Double Crossover
(C – Sh)
(C – Wx)
k, e, cd



Kecd+
k, e, cd/ k e cd
(Kidney, ebony, cardinal)

Kecd+/ k e cd
(wild type)
6

               14

8


                     Total
4000

The linkage relationships in the trihybrid F1  can also be determined directly from the F2 by for the most frequent F2 phenotypes are kidney cardinal (1761) and ebony (1773) indicating that kidney and cardinal were on one chromosome in the F1 and ebony on other
% of Non-Cross over = Number of Parental types      X  100
                        Total number of progeny
                                              =  3534   X  100
                                                                4000
                                                             = 88.6%
      Frequency (%) of crossing over between k and e
                                                               226 + 14   X 100
                                                               4000
                                                               = 7.02 %

Frequency (%) of crossing over between e and cd
                                                               186 + 14   X 100
                                                               4000
                                                               = 5%

Frequency (%) of crossing over between k and cd
                                                               226+ 186   X 100
                                                                   4000
                                                               = 11.3 %

The recombination value of k and cd (11.3) is close to the recombination value of (k-e) + (e-cd) = 7.2 + 5 = 11.2%.
This shows that gene ‘e’is present between the genes ‘k’and ‘cd’.
On this basis the linkage map of genes k, e, cd can be –
    
                                        k       7.02                e             5             cd        
                            ________7.2_________________5___________


13. In a four-o-clock plant, red coloured flowers ‘R’ is incompletely dominant over white coloured flowers ‘r’, the heterozygous plant being pink flowered. If a red flowered four-o-clock plant is crossed with a white flowered one, what will be the flower colour of the F1, of the F2 of the offspring of a cross of the F1 with its
Phenotype    Red Flower     X    White Flower
Genotype            RR               X         rr
Gametes               R                X         r

  F1 Generation                   Rr
Self Cross of F1     Rr             X     Rr
Phenotypic Ratio :    Red  :  Pink  :  White
                                    1    :   2      :    1
Genotypic Ratio:         RR   :  Rr     :    rr
                                    1    :   2      :    1
Test Cross           :      F1   X  Recessive parent
                                             Rr   X   rr
Phenotypic Ratio :  Pink   :   White
Genotypic Ratio       Rr      :    rr
                                  1      :     1
Back Cross         :   F1   X  Dominant parent
                               Rr     X    RR
Phenotypic ratio :   Red   :  Pink
Genotypic ratio   :      1     :    1
Phenotypic ratio :       Rr    :   rr
                                    1      :     1


Spotters:

Mitochondria
1.     It shows double membrane envelope.
2.     The outer membrane is smooth
3.     The inner membrane show invaginations called Cristae
4.     The Central space is filled with fluid matrix

Chloroplast
1.     It is spherical or oval in shape
2.     It shows double membrane separated by an empty space called the periplastidial space
3.     The inner space is filled with a colourless, homogenous matrix called the stroma
4.     A large number of lipoprotein membrane extend from one end to the other and are arrange parallel to each other. These are called thylakoids.
5.     At some places the thylakoids are arranged one above the other and appear as stack of coins. These are called grana.

Endoplasmic Reticulum:
1.     It shows an network of microtubules extending from the outer nuclear membrane to the plasmamembrane.
2.     It shows cisternae, vesicles and tubules
3.     Cisternae are long, flattened, unbranched tubules, which are arranged in parallel arrays
4.     Vesicles are large, rounded or spherical in shaped
5.     Tubules are small, smooth walled branching structures of various sizes and shapes.

Golgi Complex
1.     It shows a group of membrane bound structures
2.     It shows cisteranae, vacuoles and tubules
3.     Cisternae comprises 3-7 flattened sacs
4.     Vacuoles are large and spherical
5.     Tubules are single unit membrane and filled with amorphous substances

Nucleus:
1.     It shows a spherical ball like structure bound by a double membrane envelope called the nuclear membrane
2.     Inside the nuclear membrane is homogenous, semi-solid substance called the nucleoplasm.
3.     Deeply stained net work like substances are present in the nucleoplasm called the chromatin reticulum
4.     One or two spherical, deeply stained bodies called the nucleoli are found inside the nucleus.
Ribosomes
1.     It shows ribonucleoprotein granules
2.     They are composed of two unequal sub-units, namely larger and smaller
3.     Some of they appear as free floating masses in the cytoplasm and some are attached to the surface of endoplasmic membranes.

Lampbrush Chromosomes
1.     It shows exceptionally large sized chromosomes
2.     It shows an main axis and the lateral loops
3.     The four chromatids of the meiotic bivalent are held together by chiasmata and are seen as a long axis
4.     The chromonema of these chromatids gives out fine loops at the lateral side giving the appearance of lampbrush
5.     Each loop occurs in pairs.
Polytene Chromosomes
1.     It shows a multistranded chromosomes
2.     Several chromatids lie parallel to each other and are held together  at the centromere
3.     Each strand shows swellings called the puffs or Balbiani rings.
4.     Each chromatids shows bands and interbands similar to a bar code.


No comments:

Post a Comment